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Event cameras produce asynchronous and sparse event streams capturing changes in light intensity.
Overcoming limitations of conventional frame-based cameras, such as low dynamic range and data
rate, event cameras prove advantageous, particularly in scenarios with fast motion or challenging
illumination conditions. Leveraging similar asynchronous and sparse characteristics, Spiking Neural
Networks (SNNs) emerge as natural counterparts for processing event camera data. Recent
advancements in Visual Transformer architectures have demonstrated enhanced performance in both
Artificial Neural Networks (ANNs) and SNNs across various computer vision tasks. Motivated by the
potential of transformers and spikeformers, we propose two solutions for fast and robust optical flow
estimation: STTFlowNet and SDformerFlow. STTFlowNet adopts a U-shaped ANN architecture with
spatiotemporal Swin transformer encoders, while SDformerFlow presents its full spike counterpart with
spike-driven Swin transformer encoders. Notably, our work marks the first utilization of spikeformer
for dense optical flow estimation. We conduct end-to-end training for both models using supervised
learning on the DSEC-flow Dataset. Our results indicate comparable performance with state-of-the-art
SNNs and significant improvement in power consumption compared to the best-performing ANNs for
the same task.
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Qualitative results for optical flow are evaluated on the DSEC validation dataset. The first column displays the
event input, while the second column depicts the ground truth dense optical flow from our split validation dataset.
During evaluation, we mask the estimated flow where ground truth flows are available. (Best viewed in color).
Notably, when the vehicle moves forward in steady motion, all models achieve accurate flow estimation. However,
in scenarios involving sharp turns or large, abrupt motions (third row in the figure), the baseline EVFlowNet
struggles to estimate the correct direction. In contrast, both our STTFlowNet and our fully spiking model effectively
handle such scenarios,

Qualitative results for optical flow evaluated on the MVSEC dataset for the dt = 1 case. The first row is from
outdoor_day1 sequence and the last row is from the indoor_flying sequence. Note that for evaluation we use the
masked sparse optical flow.

For SDSA block, the Query, Key, and Value
tensors, denoted as are spiking tensors. We
use dot product attention, and since the
attention maps are naturally non-negative,
softmax is unnecessary.

For SDformerFlow, the primary architecture comprises three components: a) a Spike Feature
Generator (SFG) embedding module, b) a Spatiotemporal Swin Spikeformer (STSF) encoder, and
c) spike decoders and flow prediction. The event stream initially enters the SFG module, which
outputs spatiotemporal embeddings for the STSF encoders. The STSF encoders then generate
spatiotemporal features hierarchically. Subsequently, the output from each encoder is concatenated to
the decoder at the same scale to predict the flow map. Two additional residual blocks exist between
the encoder and decoder modules.

Shortcuts in SNN

3. Training method
We train our model with supervised learning using the mean
absolute error between the estimated optical flow and the ground-
truth flow. For SNN, we employ surrogate gradient (SG) with
backpropagation through time (BPTT) to train the network. We use the
inverse tangent as the surrogate function

Ablation study for STTFlowNet. Column I stands for the event input type. For the variant of
STTFlowNet, en means number of encoders, b stands for number of input blocks, p means spatial
patch size, and w stands for swin spatial window size. Best-performing results are highlighted.

We studied: a) the number of time steps/channels; b) shortcut variants: SEW or MS shortcuts;
and c) the number of encoders. The spikeformer encoders significantly improved performance
compared to the baseline model, albeit with reduced robustness when directly tested on scaled-up
resolutions. Increasing the number of time steps helped capture temporal information at the expense
of increased memory consumption. The MS shortcut variant notably improved results compared to
SEW shortcut. One possible explanation is that the MS shortcut provides an information flow path
between the states of the neurons before the spike function and is not regulated by their firing status.
Increasing the number of encoders from three to four further enhanced performance at the cost of
increased parameters. Finally, incorporating convolution-based modules as CAformer in the first two
swin encoders yielded a lightweight model but with slightly reduced performance.

Quantitative results for optical flow estimation of the
DSEC optical flow benchmarks for all the test
sequences. The first column shows the methods, A
stands for ANN, S stands for SNN, while M stands for
model-based method.

Qualitative results for optical flow are evaluated on the official DSEC test dataset. The first column
presents the event input, while the other columns show the corresponding estimated optical flow for the baseline
method EVFlow and our methods STTFlowNet and SDformerFlow. (Best viewed in color).

Regarding the quantitative evaluation tested
on DSEC, our ANN model outperforms the
baseline model EVFlowNet and other self-
supervised trained models. However, it still
trails behind correlation-volume-based
models. The only SNN model included in
the benchmark uses stateless neurons and
is trained at full resolution, whereas most
other SNN approaches are trained and
validated on cropped resolution, with limited
representation in the benchmark.

For the quantitative evaluation tested on MVSEC dataset, both our ANN and SNN models yield
competitive results. Our ANN model performs better than another transformer-based U-Net
architecture. Our SDformerFlow ranked second for the average AEE for all the sequences
among all the SNN methods. However, the best performing model reports their results for the
indoor sequences separately trained on the subsets of the same dataset, which may have
overfitted to the test dataset.

Energy consumption for ANN and SNN models

Energy consumption for ANN:                
Energy consumption for SNN:
we estimate energy consumption based on the number of floating-point operations (FLOPS)
required, as all operations in ANN layers are multiply-accumulate (MAC) operations. Conversely,
SNN models convert multiplication operations into addition operations due to their binary nature.
For 32-bit floating-point computation, these energy values are typically EMAC = 4.6pJ and EAC =
0.9pJ, respectively, based on a 45 nm technology Our results demonstrate that the energy
consumption of our SNN model is nearly one-tenth that of its ANN counterpart and one-third that
of the baseline EVFlowNet model.

Our code is available:
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