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' Event-based Optical Flow

1. Abstract

Event cameras produce asynchronous and sparse event streams capturing changes in light intensity.
Overcoming limitations of conventional frame-based cameras, such as low dynamic range and data
rate, event cameras prove advantageous, particularly in scenarios with fast motion or challenging
illumination conditions. Leveraging similar asynchronous and sparse characteristics, Spiking Neural
Networks (SNNs) emerge as natural counterparts for processing event camera data. Recent
advancements in Visual Transformer architectures have demonstrated enhanced performance in both
Artificial Neural Networks (ANNs) and SNNs across various computer vision tasks. Motivated by the
potential of transformers and spikeformers, we propose two solutions for fast and robust optical flow
estimation: STTFlowNet and SDformerFlow. STTFlowNet adopts a U-shaped ANN architecture with
spatiotemporal Swin transformer encoders, while SDformerFlow presents its full spike counterpart with
spike-driven Swin transformer encoders. Notably, our work marks the first utilization of spikeformer
for dense optical flow estimation. We conduct end-to-end training for both models using supervised
learning on the DSEC-flow Dataset. Our results indicate comparable performance with state-of-the-art
SNNs and significant improvement in power consumption compared to the best-performing ANNs for
the same task.

2. Network Architecture for SDformerFlow
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For SDformerFlow, the primary architecture comprises three components: a) a Spike Feature
Generator (SFG) embedding module, b) a Spatiotemporal Swin Spikeformer (STSF) encoder, and
c) spike decoders and flow prediction. The event stream initially enters the SFG module, which
outputs spatiotemporal embeddings for the STSF encoders. The STSF encoders then generate
spatiotemporal features hierarchically. Subsequently, the output from each encoder is concatenated to
the decoder at the same scale to predict the flow map. Two additional residual blocks exist between
the encoder and decoder modules.

3. Training method

We train our model with supervised learning using the mean
absolute error between the estimated optical flow and the ground-
truth flow. For SNN, we employ surrogate gradient (SG) with
backpropagation through time (BPTT) to train the network. We use the
iInverse tangent as the surrogate function

9. Ablation study

Vanilla Shortcut

Model AEL Outlier % 4 |
test res: cropped (C) or full (F) cC Fr C F

LIF-EV-FlowNet-en4-sH 3.08 3.47 19.67 23.70 17.90 14.41 voxell0
SpikeformerFlowNet-SEW-en3-s8-c4 1.60 3.21 11.90 32.30 12.51 14.77 voxell5* 240,320
SpikeformerFlowNet-SEW-en3-s4-¢8 1.76 3.54 13.43 41.18 14.01 27.81 voxell5* 240,320
SpikeformerFlowNet-SEW-en3-sb-c4 1.51 2.52 9.85 22.75 10.68 11.10 voxell( 288,384
SpikeformerFlowNet-MS-en3-sh-c4  1.28 2.01 6.91 15.55 9.01 &8.99 voxell( 288,384
SpikeformerFlowNet-MS-en4-sbh-c4 1.25 1.98 6.69 15.06 8.48 8.81 voxell( 288,384
SpikeCAformerFlow-MS-en4-sh-c4  1.66 2.97 10.65 27.87 12.05 22.55 voxell( 288,384
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*The SEW variant with input voxel size of 15 was trained with a resolution of 240 x 320 due to GPU
memory limitations. The rest of the Spikeformer models were trained at 288 x 384 resolution.
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Ablation study for STTFlowNet. Column | stands for the event input type. For the variant of T
STTFlowNet, en means number of encoders, b stands for number of input blocks, p means spatial
patch size, and w stands for swin spatial window size. Best-performing results are highlighted. Shortcuts in SNN

We studied: a) the number of time steps/channels; b) shortcut variants: SEW or MS shortcuts;
and c) the number of encoders. The spikeformer encoders significantly improved performance
compared to the baseline model, albeit with reduced robustness when directly tested on scaled-up
resolutions. Increasing the number of time steps helped capture temporal information at the expense
of increased memory consumption. The MS shortcut variant notably improved results compared to
SEW shortcut. One possible explanation is that the MS shortcut provides an information flow path
between the states of the neurons before the spike function and is not regulated by their firing status.
Increasing the number of encoders from three to four further enhanced performance at the cost of
increased parameters. Finally, incorporating convolution-based modules as CAformer in the first two
swin encoders yielded a lightweight model but with slightly reduced performance.

This work received support from projects EBCON (PID2020-119244GB-100) and RAADICAL (PLEC2021-007817)
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4. Qualitative and quantitative results
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(a) Events (b) GT (c) EVFlowNet (d) STTFlowNet (e) SDformerNet

Qualitative results for optical flow are evaluated on the DSEC validation dataset. The first column displays the
event input, while the second column depicts the ground truth dense optical flow from our split validation dataset.
During evaluation, we mask the estimated flow where ground truth flows are available. (Best viewed in color).
Notably, when the vehicle moves forward in steady motion, all models achieve accurate flow estimation. However,
iIn scenarios involving sharp turns or large, abrupt motions (third row in the figure), the baseline EVFlowNet
struggles to estimate the correct direction. In contrast, both our STTFlowNet and our fully spiking model effectively

handle such scenarios,

(a) events (b) EVFlowNet (¢c) STTFlowNet (d) SDformerFlow

Qualitative results for optical flow are evaluated on the official DSEC test dataset. The first column
presents the event input, while the other columns show the corresponding estimated optical flow for the baseline
method EVFlow and our methods STTFlowNet and SDformerFlow. (Best viewed in color).

Training EPE Outlier % AAE | o |
ERAFT 10 0.779 2684  2.838 Regarding the quantitative evaluation tested

EV-FlowNet retrained [10] 2.32 18.60 - on DSEC, our ANN model outperforms the

IDNet [35 0.719 2036  2.723 baseline model EVFlowNet and other self-

TMA |19 0.743 2301 2.684  gynervised trained models. However, it still
E-Flowformer |18 0.759 2446  2.676 ; : :

TamingCM|26 933 17771 10.56 trails  behind correlatlon-volyme-base_d

STTFlowNet-en3 (Ours) 0. . models. The only SNN model included in

SNN_3DNet|2] - 3 the benchmark uses stateless neurons and

SDFormerFlow-en3 (Ours) , . .
MO Is trained at full resolution, whereas most
’ other SNN approaches are trained and

Quantitativg results for optical flow estimation of the validated on cropped resolution, with limited
DSEC optical flow benchmarks for all the test C .
representation in the benchmark.

sequences. The first column shows the methods, A
stands for ANN, S stands for SNN, while M stands for

model-based method.

Training dt = 1 frame D  outdoor dayl indoor flyingl indoor flying2 indoor flying3 Avg
AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier AEE % Outlier

EV-FlowNet |44 M 049 0.20 1.03 2.20 1.72 15.10 153 11.90 1.19 7.39
EV-FlowNet2 [46] M 0.32 0.00 0.58 0.00 1.02 4.00 0.87 3.00 0.69 1.75
GRU-EV-FlowNet (12| FPV 0.47 0.25 0.60 0.51 1.17 8.06 0.93 5.64 0.79 3.62
STE-FlowNet [3] M 042 0 0.57 0.1 0.79 1.6 1.72 1.3 0.62 0.75
ET-FlowNet [32] FPV 0.39 0.12 0.57 0.53 1.2 8.48 0.95 5.73 0.78 3.72
ADM-Flow [24] MDR 0.41 0.00 0.52 014 0.68 1.18 0.52 004 0.53 034
STT-FlowNet (ours) MDR 0.66 0.29 0.57 0.33 0.88 4.47 0.73 1.58 0.71 1.67

Spike-FlowNet M 0.49 0.84 1.28 1.11 0.93
XLIF-EV-FlowNet |12| FPV 0.45 0.16 0.73 0.92 1.45 12.18 1.17 8.35 0.95 5.40

S Adaptive-SpikeNet |16| FPV 0.44 0.79 1.37 1.11 0.93

SNN3DNet M 0.85 0.58 0.72 0.67 0.71

SDformerFlow (Ours) MDR 0.69 0.21 0.61 0.60 0.83 . 0.76 145  0.72

Qualitative results for optical flow evaluated on the MVSEC dataset for the dt = 1 case. The first row is from
outdoor_day1 sequence and the last row is from the indoor_flying sequence. Note that for evaluation we use the
masked sparse optical flow.

For the quantitative evaluation tested on MVSEC dataset, both our ANN and SNN models yield
competitive results. Our ANN model performs better than another transformer-based U-Net
architecture. Our SDformerFlow ranked second for the average AEE for all the sequences
among all the SNN methods. However, the best performing model reports their results for the
indoor sequences separately trained on the subsets of the same dataset, which may have
overfitted to the test dataset.

6. Energy consumption

Model EPE Type Param (M) FLOPS(G) Avg. spiking rate Power(m.J)

EVFlowNet retrained 1.57 ANN 14.14 22.38 - 102.95
LIF-EVFlowNet  3.08 SNN 14.13 22.38 0.29 29.21
STTFlowNet-en3 0.72 ANN  20.30 86.88 - 399.65
SDFlowNet-en3 1.28 SNN 19.83 34.80 0.27 37.64
SDFlowNet-en4 1.25 SNN 56.48 39.10 0.27 41.08

Energy consumption for ANN and SNN models

Energy consumption for ANN:  FLOPSXE yjac

Energy consumption for SNN:  FLOPSx R, x T x E 4c

we estimate energy consumption based on the number of floating-point operations (FLOPS)
required, as all operations in ANN layers are multiply-accumulate (MAC) operations. Conversely,
SNN models convert multiplication operations into addition operations due to their binary nature.
For 32-bit floating-point computation, these energy values are typically EMAC = 4.6pJ and EAC =
0.9pJ, respectively, based on a 45 nm technology Our results demonstrate that the energy
consumption of our SNN model is nearly one-tenth that of its ANN counterpart and one-third that
of the baseline EVFlowNet model.
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